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Electromagnetic waves

THE INTERACTION OF MATTER WITH “RADIATION”
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Ionizing radiation limit
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Electromagnetic waves

MAGNETIC RESONANCE IMAGING
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https://nationalmaglab.org
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Equipment

MAGNETIC RESONANCE IMAGING
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MRI Scanner Cutaway

https://nationalmaglab.org
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Applications: soft tissue

MAGNETIC RESONANCE IMAGING
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https://case.edu/med/neurology/NR/MRI%20Basics.htm 
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Applications: anatomy

MAGNETIC RESONANCE IMAGING
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https://mrimaster.com

T1 MRI Image of the Cervical SpineT2 MRI Image of the the lumbar spine
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Applications: Dynamic imaging

MAGNETIC RESONANCE IMAGING
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https://mrimaster.com

Hemodymamics measurements
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MAGNETIC RESONANCE IMAGING -> SPECTROSCOPY
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Metabolites/water signal: 
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Water suppression

X

~ 55 M
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MRI:

Imaging 1H of water

MRS:

Measuring 1H of biomolecules

glutamate

Courtesy of J Mosso

usgs.gov

As chemical NMR… 

but in vivo
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Applications: biochemical analysis

MAGNETIC RESONANCE IMAGING -> SPECTROSCOPY
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https://mrimaster.com
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Preclinical vs clinical

PRECLINICAL MRI AND MRS: WHY?
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https://mrimaster.com

■ Framework of preclinical MRI / MRS (rats and mice in most cases)

– Ethical considerations (ultimately, the goal is not to find ways to cure rodents…)

■ Usefulness in terms of biological aspects

– Animal models

– Deeper understanding of diseases and healthy mechanisms

– Follow-up of disease progression stages and treatments

■ Usefulness in terms of MR physical aspects

– New MR acquisition approaches

– Can be developed on cutting-edge MR systems with less time constraints
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■ MRI/MRS are powerful imaging techniques for their flexibility and 
sensitivity to a wide range of tissue properties

■ MRI/MRS are popular for their relative safety, their non-invasive 
nature, the use of no ionizing radiation.

■ MRI/MRS are applications of NMR (nuclear magnetic resonance) to 
radiology. 

(N) Nuclear (we play with the atom nucleus)

M Magnetic (we interact with it with magnetic fields)

R Resonance (we need to match the RF field to the natural precession of the nucleus)

I/S Imaging or Spectroscopy (the outcome measurements)

THE ORIGIN OF MAGNETIC RESONANCE

11
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■ Main magnetic field B0 : on the order of 1 T

■ Gradient fields Gx,Gy,Gz : on the order of 100 mT/m

■ Radio frequency (resonant) field B1: on the order of 10 µT

– Very low amplitude (earth magnetic field ≈ 25-65  µT)

– Very high frequency (on the order of 100 MHz)

– Depends linearly on the applied B0 field and Nucleus of interest

Magnetic fields in the game:

NUCLEAR MAGNETIC RESONANCE
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COMPARISON WITH EARTH MAGNETIC FIELD

13Source: NOAA/NGDC & CIRES
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Interaction of magnetic moments of nuclei with the magnetic field: 

The dual nature of the MR phenomenon

THE ORIGIN OF MAGNETIC RESONANCE
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• Atomic nuclei possess an intrinsic angular momentum (spin) L, 

as a composition of the spin of their composing protons and neutrons

• According to quantum mechanics, L is quantized: 𝐿 =
ℎ

2𝜋
𝐼 𝐼 + 1

I= 0, 1/2, 1, 3/2, ...

Depending on their composition:

- even number of protons and neutrons I=0

- odd number of protons and neutrons I=integer

- odd number of protons and even number of neutrons I=half-integer

- odd number of neutrons and even number of protons I=half-integer
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Interaction of magnetic moments of nuclei with the magnetic field: 

The dual nature of the MR phenomenon

NUCLEAR SPIN AND MAGNETIC MOMENT
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• The intrinsic angular momentum L is associated to a magnetic moment μ:

µ = 𝛾 𝐿
with 𝛾 the gyromagnetic ratio, specific for each nucleus, specifying the strength of 

coupling between the magnetic field and the angular momentum.

• In the magnetic field 𝐵0 defined as 𝐵0 = 𝐵0 ෝ𝑒𝑧, 
the measured projection of the nuclear 

magnetic moment µ are quantized:

µz = 𝛾 ℏ m

with m=−I, -I+1, …,I-1, I

(2I+1 values)
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• Zeeman energy:
Potential energy of a magnetized nucleus in an external magnetic field

𝐸 = − Ԧ𝜇 ∙ 𝐵0
𝐸 = −𝜇𝑧𝐵0 = −𝛾 ℏ m 𝐵0

ZEEMAN ENERGY LEVELS

𝐵0 ∆𝐸 = 𝛾ℏ𝐵0

α

β

For a spin ½ (𝑚 = ±1/2)

There is no spontaneous transition between energy levels 

(no emission of energy)

All changes in the energy of nuclei are through stimulated transitions
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• Zeeman energy:

Linearized Boltzmann distribution:

• Amplitude of the magnetization:

• Total magnetization: 

ZEEMAN ENERGY LEVELS: SPIN DISTRIBUTION

𝐵0 ∆𝐸 = 𝛾ℏ𝐵0

1H

(𝑛𝛼 − 𝑛𝛽) ≈
𝑛ℎ𝛾𝐵0
2𝑘𝑇

α

β

𝑀0 = 𝑛𝛼 − 𝑛𝛽 µ𝑧 = 𝑛𝛼 − 𝑛𝛽 𝛾
ℏ

2

𝑀0 = 𝑛 1

2
𝛾ℏ 2 𝐵0

2𝑘𝑇
∝ 𝛾2

𝑛𝛼
𝑛𝛽

= 𝑒
𝛾𝐵0ℏ
𝑘𝑇

Boltzmann distribution:
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INTERESTING NUCLEI / ISOTOPES
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Nucleus Magnetic 

moment

Gyromagnetic 

ratio

(rad∙MHz T−1)

Relative 

sensitivity

Natural 

abundance (%)

1H 1/2 267.522 1.0 99.98

2H 1 41.066 0.00965 0.015

13C 1/2 67.283 0.0159 1.108

14N 1 19.338 0.0101 99.63

15N 1/2 −27.126 0.0104 0.37

19F 1/2 251.815 0.83 100

23Na 3/2 70.808 0.0925 100

29Si 1/2 −53.190 0.00784 4.7

31P 1/2 108.394 0.0663 100
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MACROSCOPIC MAGNETIZATION

Large spin ensemble

Macroscopic result

Magnetization

𝐵0

Equilibrium magnetization M0 is parallel with B0

(longitudinal magnetization), 

its status can be changed by a radiofrequency 

magnetic field
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𝝎

Equation of precession:

𝑑𝑀

𝑑𝑡
= 𝛾𝑀 × 𝐵0

For positive 𝛾 (1H, 13C, 31P)

(𝜔//𝐵0 for negative 𝛾, 15N, 17O)

Rotation defined with an angular speed vector:

𝑑𝑀

𝑑𝑡
= 𝜔 ×𝑀

With

𝜔 = 𝛾𝐵0 ≡ 𝜔0 The Larmor frequency
𝜔

Or corkscrew rule…

𝜔

PRECESSION
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THE ROTATING FRAME(S)

LARMOR FRAME

𝝎

In the laboratory frame:

𝑑𝑀

𝑑𝑡
= 𝛾𝑀 × 𝐵0

Expression in the rotating frame:

𝑑𝑀

𝑑𝑡 𝑙𝑎𝑏
=

𝑑𝑀

𝑑𝑡 𝑟𝑜𝑡
+ 𝜔 ×𝑀

In the Larmor rotating frame:

𝑑𝑀

𝑑𝑡 𝑟𝑜𝑡
=

𝑑𝑀

𝑑𝑡 𝑙𝑎𝑏
+ 𝛾𝐵0 ×𝑀

𝑑𝑀

𝑑𝑡
= 0

Lab frame

Larmor frame

→ No apparent B0 magnetic field
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FLIP ANGLE

THE RESONANCE CONDITION

If we apply a pulse 𝐵1 𝑡 right at the Larmor frequency of the considered spin 

system

→  𝜔𝑅𝐹 = 𝜔0

The dynamics of the magnetization is very much simplified:

𝑑𝑀

𝑑𝑡 𝑟𝑜𝑡
= 𝛾𝑀 × 𝐵1 𝑡 with 𝐵1 𝑡 the envelope of the pulse

Flip angle (nutation angle)

For a hard pulse

with 𝑆𝑖𝑛𝑡 the pulse shape integral

𝜃 = 𝛾න
𝑡

𝑇

𝐵1 𝑡 𝑑𝑡

𝜃 = 𝛾𝐵1 𝑇 𝜃 = 𝛾𝐵1 𝑇 𝑆𝑖𝑛𝑡

Hard pulse

𝐵1,𝑥 𝑡

𝑡T

RF pulse

𝐵1,𝑥 𝑡

𝑡
T

For a general pulse
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Single spin expectation values

QUANTUM DESCRIPTION

23

Haake et al., Magnetic Resonance Imaging, Physical 

principles and sequence design, Wiley 1999


